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Abstract
Aim: To address the uncertainty associated with climate-driven biogeographical 
changes in commercial fisheries species through an ensemble species distribution 
modelling (SDM) approach.
Location: Northeast US Continental Shelf Large Marine Ecosystem (NEUS-LME).
Methods: We combined an ensemble SDM platform (BIOMOD 2) and a high-resolu-
tion global climate model (NOAA GFDL CM2.6) to quantify spatiotemporal changes 
in habitat of two commercially important species in the Northeast US Continental 
Shelf Large Marine Ecosystem (NEUS-LME); American lobster (Homarus americanus); 
and sea scallop (Placopecten magellanicus). An ensemble SDM was calibrated using 
multi-decadal fisheries-independent surveys (1984–2016). Statistically weighted 
species-specific ensemble SDM outputs were combined with 80 years of projected 
bottom temperature and salinity changes in response to a high greenhouse gas emis-
sions scenario (an annual 1% increase in atmospheric CO2).
Results: Statistically significant changes (p < .05) in habitat suitability for both species 
were found over a large portion of the study area. Sea scallop undergoes a north-
ward shift over the study period, while American lobster moves further offshore. 
The ensemble projections showed that several management zones were identified 
with increases and decreases in species-specific habitat. Uncertainty due to varia-
tions in ensemble member models was also found in the direction of change within 
each management zone.
Main conclusions: This study provides ensemble estimates of climate-driven changes 
and associated uncertainties in the biogeography of two economically important 
species in the United States. Projected climate change in the NEUS-LME will pose 
management challenges, and our ensemble projections provide useful information 
for climate-ready management of commercial fisheries.
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1  | INTRODUC TION

Species distribution and abundance are central components of eco-
logical research and critical to both conservation planning and fisher-
ies management (Franklin, 2010). The biogeography of many marine 
species is currently shifting in response to climate-related changes in 
water temperatures and other oceanographic conditions (Hollowed, 
Planque, & Loeng, 2013; Nye, Link, Hare, & Overholtz, 2009; Pinsky, 
Worm, Fogarty, Sarmiento, & Levin, 2013). Altered biogeography of 
a species poses several management challenges because changes in 
species distributions can move stocks in and out of fixed manage-
ment boundaries (Gaines et al., 2018; Pinsky et al., 2018). Predicting 
responses of important fish stocks to future climatic conditions is 
critical to the implementation of adaptive management measures 
(Hollowed, Curchitser, Stock, & Zhang, 2013). However, likely shifts 
in biogeography for many species moving into the future remain 
largely unknown (Tompkins & Adger, 2004). Correlative species 
distribution models (SDMs), which rely on quantified species–envi-
ronment relationships to explain and predict spatial distributions of 
species, have become important tools in adaptive natural resource 
management (Franklin, 2010). Long-term projections of species dis-
tribution shifts are often sensitive to complexities, properties and 
assumptions associated with an individual SDM algorithm (e.g. how 
much interaction among variables is considered or how a species’ 
flexible responses along environmental gradients are fitted; Guisan, 
Thuiller, & Zimmermann, 2017). An emerging consensus recom-
mends that uncertainty associated with climate-driven changes in 
species distribution can be better addressed through an ensemble 
SDM approach that can summarize and represent the information 
obtained across projections based on all SDMs considered (Gama, 
Crespo, Dolbeth, & Anastácio, 2016; Mędrzycki et al., 2017).

The Gulf of Maine (GOM), Georges Bank (GB), Mid-Atlantic Bight 
(MAB) and Southern New England (SNE) are parts of the Northeast 
US continental shelf Large Marine Ecosystem (NEUS-LME) 
(Townsend, Thomas, Mayer, Thomas, & Quinlan, 2006). Climate-
driven changes in the GOM and GB ecosystem structure are a grow-
ing concern for its socio-economically important fisheries (Peck & 
Pinnegar, 2018). The NEUS-LME is undergoing rapid physical change 
with water temperature increased at an average of 0.04°C/year be-
tween 1982 and 2017 (Banzon, Smith, Chin, Liu, & Hankins, 2016; 
Reynolds et al., 2007; Figure S1). Recent studies showed a similar in-
creasing trend in the GOM and GB fall water temperature during the 
period of 1968–2013, with faster warming rates in GB and the MAB 
(Kleisner et al., 2016, 2017). Furthermore, a recent high-resolution 
global climate model projection suggests that warming of the NEUS-
LME associated with the radiative effects of greenhouse gases may 
be augmented by warming associated with dynamic shifts in the Gulf 
Stream associated with climate change (Saba et al., 2016). A projected 

northerly shift in warm Gulf Stream waters may increase quantities 
of warm slope water entering the Northwest Atlantic Shelf, possibly 
leading to warming by as much as 4–5°C along the southern portion 
of the shelf (MAB and GB) and 3.7–3.9°C in the GOM along with an 
accompanying increase in salinity. Recent observations suggest that 
such a shift may be occurring (Caesar, Rahmstorf, Robinson, Feulner, 
& Saba, 2018).

American lobster (Homarus americanus; hereafter lobster) and 
sea scallop (Placopecten magellanicus; hereafter scallop) support 
two of the most economically valuable single-species commercial 
fisheries in the NEUS-LME with lobster valued at over 669 million 
USD and Scallop at over 486 million USD in 2016 (NMFS, 2016). 
These species are vital to the economies and social well-being of 
coastal communities in this area (NMFS, 2016). The biogeography 
of both American lobster and sea scallop is keenly affected by 
changes in climatic variables (Kurihara, 2008; Tanaka et al., 2018; 
Tanaka & Chen, 2016; Torre, Tanaka, & Chen, 2018, 2019). The lat-
est benchmark assessment showed that the lobster stock in the 
southern range is severely depleted due to several environmen-
tal factors (e.g. climate-driven recruitment failure and shell dis-
ease; ASMFC, 2015). Recent studies also showed that observed 
and projected northern shifts in the distribution and habitat of 
American lobster (Greenan et al., 2019; Pinsky et al., 2013; Stanley 
et al., 2018). There have also been studies that have linked changes 
in the distribution of scallop in response to abiotic factors (benthic 
temperature, benthic salinity, bottom slope) and biotic factors (sea 
star predation; Lowen et al., 2019). Several species in the NEUS-
LME are thought to be depleted due to a failure to recover from 
intense overfishing along with the southern extent of the spe-
cies’ range resulting from persistent warming conditions (Pershing 
et al., 2015; Wahle, Dellinger, Olszewski, & Jekielek, 2015). 
Therefore, long-term changes in the climate regime in the NEUS-
LME are expected to greatly impact lobster and scallop habitat 
suitability (Caputi, Lestang, Flusher, & Wahle, 2013). Providing en-
semble projections of climate-driven habitat suitability for these 
species is of great interest to stakeholders, policymakers and fish-
ery management bodies.

While the effects of climate change are complex and diverse, 
the impacts on fisheries can be grouped into two general cate-
gories: changes to stock biomass or productivity, and changes to 
stock distribution, each of which poses different management 
challenges (Brander, 2009; Gaines et al., 2018). This study fo-
cuses on the latter, changes to stock distribution, which affects 
where fish can be caught and who has access to them over time. 
To evaluate potential climate change impacts on lobster and scal-
lop fisheries, we considered bottom temperature and bottom sa-
linity as proxies of species habitat suitability. These ecologically 
relevant and readily available variables have been shown to be 
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strong predictors of species distribution in recent modelling ef-
forts (Kleisner et al., 2016; McHenry, Welch, Lester, & Saba, 2019; 
Rheuban, Kavanaugh, & Doney, 2017; Tanaka et al., 2018; Torre, 
Tanaka, & Chen, 2019). The objective of this study is to provide an 
ensemble projection, generated through a range of different SDMs, 
of the spatiotemporal changes in habitat of two most important 
commercial fish stocks in the NEUS-LME, lobster and scallop, in 
response to projected changes from the high-resolution climate 
model described by Saba et al. (2016). This study also provides a 
critical step towards establishing long-term adaptive management 
measures for lobster and scallop in the NEUS-LME.

2  | METHODS

2.1 | Study area

This study area covers the majority of the NEUS-LME (38.0°–45.0°N 
and 75.0°–67°W; Figure 1). The NEUS-LME waters are encom-
passed by the Gulf Stream to the southeast and the U.S. coast to the 
northwest. These waters are comprised of mixed slope and shelf wa-
ters and can be divided into several relatively distinct regional sub-
systems but are all interconnected to some degree by the Labrador 
Current which flows southward towards the equator (Townsend 
et al., 2006). This study was structured around important manage-
ment zones for lobster and scallop (Figure 1) to incorporate a spatial 
scale relevant to management interests, as well as to encapsulate 
projected biological activity from each of these distinct subregions 
in the NEUS-LME.

2.2 | Study species

American lobster are large, mobile, cold-blooded, marine decapods 
and undergo migration to maintain exposure to optimal biophysi-
cal conditions (Caputi et al., 2013). American lobster are ectother-
mic and climate change can have a pervasive bottom-up influence 
throughout its larval and post-larval life stages (Caputi et al., 2013; 
Quinn, 2016; Steneck & Wahle, 2013). Water temperature has a 
significant impact on lobster's life history and ecology (e.g. recruit-
ment, behaviour and distribution (ASMFC, 2015). For example, the 
species undergo seasonal migrations likely regulated by tempera-
ture change as opposed to selecting for optimal habitat on an in-
stantaneous basis. American lobster can be found spanning a range 
of temperatures, from −1 to 26°C (Quinn, 2016), while a preference 
for a narrower range, 12–18°C, and avoidance of temperature below 
5°C and above 19°C has been demonstrated through laboratory ex-
periments (Crossin, Al-Ayoub, Jury, Howell, & Watson, 1998). While 
the increase in water temperature may not negatively affect the 
availability of thermally suitable habitat, warmer temperature has 
been linked to the increased prevalence of epizootic shell disease, 
ESD caused by chitinolytic bacteria (Groner et al., 2016; Hovel & 
Wahle, 2010; Maynard et al., 2016).

Scallop are bivalve mollusks of the family Pectinidae. In contrast 
to lobsters, sea scallops are largely sedentary, especially during the 
adult phase of their life history (Shumway & Parsons, 2016). The spe-
cies’ abundance and distribution are influenced by a multitude of hab-
itat characteristics and ocean currents that interact to control larval 
settlement and survival into the adult stage, whereas water tempera-
ture plays an important role in regulating the distribution of scallop 

F I G U R E  1   Left: Spatial extent of the Northeast US continental shelf Large Marine Ecosystem (NEUS-LME). Right: Selected management 
areas within NEUS-LME; GOM_GB (Gulf of Maine & Georges Bank), SNE (Southern New England)
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through larval movement and post-larval survival/mortality (Hart & 
Chute, 2004; MacDonald & Thompson, 1985a, 1985b; Stokesbury 
& Himmelman, 1995; Thouzeau, Robert, & Smith, 1991; Wildish & 
Saulnier, 1992). Sea scallop occurs mainly at depths ranging from 15 
to 110 m throughout its range but can be found in shallower water in 
the northern part of its range, where it has been reported at depths 
up to 2 m (Naidu & Anderson, 1984). Adults show optimal growth at a 
temperature between 10–15°C, with temperatures above 21°C being 
lethal, and prefer full-strength seawater ~35 ppt, with salinities of 
16.5 ppt or lower being lethal (Stewart, 1994). Common predators for 
juvenile sea scallops in the NEUS-LME include the sea star (Astropecten 
americanus) and the rock crab (Cancer spp.). These species contribute 
significantly to scallop mortality and can thus impact their distribution 
and abundance (Hart, 2006).

2.3 | Survey data

The data available for the analysis are a multi-decade scientific bot-
tom trawl survey dataset and associated environmental (bottom 
temperature, bottom salinity and depth) variables (Figure S2). The 
fishery-independent survey data of lobster and scallop were col-
lected by the Northeast Fisheries Science Center (NEFSC: 1984–
2016) that cover offshore continental shelf waters. For lobster, the 
Maine/New Hampshire (MENH: 2000–2016), Massachusetts (MA: 
1984–2016), Rhode Island (10984–2016) and Connecticut (1984–
2016) state survey data provided the additional coverage in the in-
shore waters (<3 nautical miles from shore; Figure S2). The inshore 
survey data were incorporated to address the known gap in the spa-
tial coverage of lobster monitoring effort (Tanaka et al., 2019). The in-
shore trawl surveys and the NEFSC offshore survey were conducted 
during spring (April–June) and fall (October–December) of each year. 
Area coverage for the survey comprises the Western Scotian Shelf 
of the GOM, south to Cape Lookout, North Carolina. Briefly, these 
fishery-independent multispecies surveys are based on stratified 
random sampling design and target demersal fish and invertebrate 
species. In addition to catch data, environmental data are collected 
as well, with water temperature and salinity being measured at each 
station (NEFSC, 2018). Prior to the analysis, the survey data were 
screened to exclude surveys lacking key information (geographic co-
ordinates, tow duration, date/year, bottom water temperature, salin-
ity, depth and a number of species caught). This pre-analysis data 
screening process resulted in survey data containing 31,691 tows for 
lobster and 41,664 tows for scallop. For lobster, the total number 
of tows used in model calibrations is 31,691, which provided 19,847 
absence and 11,844 presence records (37.37% presence). For scal-
lop, the total number of tows used in the analysis was 41,664, which 
provided 23,744 absence and 17,920 presence records (43.01% pres-
ence). Lobster and scallop catches were standardized as numbers of 
each species caught in the survey specific area swept for the 20 min 
trawling (Table S1). More detailed information of these bottom 
trawl surveys is provided in the appendix, Johnston (2012), Politis, 
Galbraith, Kostovick, and Brown (2014) and Tanaka et al. (2019).

2.4 | Environmental information and climate 
projections

Projected oceanographic conditions used in this study were devel-
oped using the delta method (Fogarty, Incze, Hayhoe, Mountain, & 
Manning, 2008; Hare et al., 2012). The delta method is commonly 
used for future climate projection, which relies on the difference 
between future climate anomalies and a baseline regional climatol-
ogy (historical climate condition). The delta method can remove the 
climate model projection biases (e.g. drift) and provide a simple and 
robust projection of future climate conditions (Hare et al., 2012).

The historical bottom temperature and salinity climatologies 
within the NEUS-LME were developed using high-resolution, quali-
ty-controlled monthly means from the Northwest Atlantic regional 
bottom temperature and salinity climatology for 1955–2012 (0.1°; 
Seidov et al., 2016) (Figure S3). Bathymetry data were obtained from 
the U.S. Coastal Relief Model (NGDC, 1999).

Projected bottom temperature and salinity conditions used 
in this modelling framework are from a high-resolution global cli-
mate model developed at the NOAA Geophysical Fluid Dynamics 
Laboratory (GFDL CM2.6; Delworth et al., 2012; Saba et al., 2016; 
Figures S4 and S5). CM2.6 is a coupled atmosphere-ocean-land-sea 
ice global climate model, with a 0.1° average horizontal resolution 
for its ocean component (Saba et al., 2016). CM2.6 resolves meso-
scale oceanographic processes and fine-scale bathymetry within 
the NEUS-LME, leading to a better simulation of the regional ocean 
and shelf circulation when compared to global climate models with 
coarser ocean components (Saba et al., 2016). The monthly bottom 
temperature and salinity anomalies projections that correspond to 
spring and fall survey efforts were used in this study. The projected 
temperature and anomalies from CM2.6 are based on (a) the stan-
dard model initialization procedure where global atmospheric CO2 
is fixed at a 1,860 pre-industrial concentration to bring the climate 
system into near-equilibrium, and (b) a transient climate response 
to simulated 1% year-1 increase in global atmospheric CO2 run (i.e. 
2xCO2 simulation) up to 70 years and is then fixed for an additional 
10 years. The CM2.6 2xCO2 simulation can be roughly compared to 
the IPCC highest greenhouse gas emissions scenario (IPCC-RCP8.5). 
Under the IPCC RCP8.5 scenario, the global mean surface tempera-
ture increases by 2°C by 2060–2070 relative to the 1986–2005 
climatology (Winton, Anderson, et al., 2014), whereas the CM2.6 
2xCO2 simulation projects the global mean temperature increases 
by 2°C by year 60–80. This results in bottom temperature warming 
on the scale of 1.8–2.9°C over the simulated 80 years across the 
NEUS-LMES.

2.5 | Ensemble species distribution 
modelling algorithm

Ensemble SDMs for lobster and scallop were calibrated using 
both presence–absence data and environmental data collected by 
the available bottom trawl survey programmes (Figure S2). The 
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environmental variables used for the ensemble lobster and scallop 
habitat modelling were directly obtained from the scientific bottom 
trawl survey dataset (1984–2016; Figure S2). We used bottom tem-
perature, salinity and depth that were available at each tow location 
(Tanaka & Chen, 2016; Torre, Tanaka, & Chen, 2018). Furthermore, 
the location variables (i.e. latitude and longitude in decimal degrees) 
were used to capture the localized effects (Rooper, Zimmermann, 
Prescott, & Hermann, 2014; Tanaka, Belknap, Homola, & Chen, 2017; 
Tanaka et al., 2018; Winton, Wuenschel, & McBride, 2014). The data 
for modelling were from 31,691 for lobster and 41,664 tows for scal-
lop. Environmental data used for the training of lobster models were 
matched directly to the specific time that the tow occurred, as this 
species has demonstrated behavioural and migratory responses to 
temperature (ASMFC, 2015; Caputi et al., 2013; Mercaldo-Allen & 
Kuropat, 1994). For sea scallop, dynamic environmental variables 
(bottom temperature and salinity) collected from the bottom trawl 
survey were averaged across all seasons. Temporal aggregation of 
these variables was carried out in order to incorporate the largely 
sedentary nature of this species and reflect an annual range of 
conditions from a given location (Torre et al., 2018). Potential col-
linearity among environmental variables used to predict species oc-
currence was assessed by calculating variance inflation factors (VIFs; 
Zuur, Ieno, & Smith, 2007). No predictor variable showed VIF value 
>3; therefore, the multicollinearity was assumed to be negligible.

Our ensemble SDM platform is based on the BIOMOD2 package 
developed in the R Programming environment (Thuiller, Georges, 
Engler, & Breiner, 2016). The BIOMOD2-based ensemble SDM algo-
rithm can incorporate species presence–absence data and combine 
multiple SDM algorithms to provide robust species occurrence–en-
vironment relationships. The following 10 SDM algorithms were 
explored to predict spatiotemporal changes in presence probability 
of lobster and scallop across the study area under current (average 
1955–2012 climatology) and future climatic conditions (CM2.6): 
generalized linear model (GLM), boosted regression tree (GBM), 
generalized additive model (GAM), classification tree analysis (CTA), 
artificial neural network (ANN), surface range envelope (SRE), flexi-
ble discriminant analysis (FDA), multiple adaptive regression splines 
(MARS), random forest (RF) and maximum entropy (Maxent). To 
optimize the fit to species’ response curves and increase predictive 
performance from all SDM algorithms used in the ensemble model-
ling framework, a tuning process was developed where individual 
SDM parameters were varied using a 10-fold cross-validation pro-
cedure (Breiner, Nobis, Bergamini, & Guisan, 2018). For each al-
gorithm, the SDM parameter setting yielding the highest receiver 
operator curve (ROC) value during the cross-validation procedure 
was kept (Table S2). For model tuning, the BIOMOD tuning function 
was used, which uses tuning functions from the CARET R-package 
to tune GBM, ANN, GAM, MARS, GLM and CTA (Kuhn, 2008), and 
ENMEVAL R-package to tune Maxent (Muscarella et al., 2014). 10-
fold split sampling (90% training data and 10% test data) was used to 
evaluate the models.

Once SDMs were fitted with optimized parameters, all SDMs 
were run three times each using a randomly chosen 80% of the 

presence–absence data, with the remaining 20% of the data being 
used to cross-validate model results. A balance of three runs per 
each SDM was struck to limit computational demands while still 
achieving stable results (Thuiller et al., 2016). Two SDM evalua-
tion criteria, receiver operator curve (ROC) and the true skill sta-
tistic (TSS), were calculated through cross-validation and used to 
assess the performance of each algorithm, with higher values for 
each metric being an indication of higher model skill (Hill, Gallardo, 
& Terblanche, 2017; Mi, Huettmann, Guo, Han, & Wen, 2017). For 
both lobster and scallop, best-fitting SDM performance was eval-
uated against predetermined thresholds (TSS > 0.5 and ROC > 0.8; 
Hill et al., 2017; Mi et al., 2017). The built-in BIOMOD2 function was 
used to derive the relative predictor variable importance from the 
SDM runs that meet TSS and ROC thresholds with regard to struc-
turing species distribution.

An ensemble SDM was built for each species using a composite 
of the SDM runs that meet predetermined TSS and ROC thresholds. 
Additionally, the response curves for all selected SDM outputs (re-
sponse curves and spatial predictions) were visually assessed for va-
lidity. Top performing algorithms (excluding those with ecologically 
unrealistic results) were ranked by the TSS score and combined, 
using a weighted average of TSS scores, to produce the final en-
semble model, which predicts the probability of presence for both 
lobster and scallop at 0.1° resolution across the study area. The 
weighted average of individual SDMs to form the final ensemble 
projection (FEP) was calculated as follows:

where Ai denotes the habitat suitability (probability of presence) a sin-
gle run of one of the 10 SDM algorithms; TSSi denotes the true skill 
statistic score received by that run; and n is the total number of all runs 
of all algorithms to be included in the final ensemble model.

2.6 | Projections of future habitat

Weighted species-specific ensemble SDM was used to project 
habitat suitability of lobster and scallop across the NEUS-LME 
under historic bottom temperature and salinity conditions and 
over the future 80 years based on the transient climate-driven bot-
tom temperature and salinity changes in response to the doubling 
of 1% CO2 per year increase scenario applied in the NOAA GFDL 
CM2.6 (Saba et al., 2016). Future habitat projections are based 
on quantified response of lobster and scallop to changes in bot-
tom temperature and salinity. Temperature and salinity were con-
sistently identified as key proxies of changing climate (and water 
conditions) that were likely to influence the probability of spe-
cies presence (Kleisner et al., 2017; McHenry et al., 2019; Tanaka 
et al., 2018, 2019; Torre et al., 2019). The regional bottom temper-
ature and salinity climatology for 1955–2012 was used to project 
species-specific habitat suitability under the “current” conditions 

(1)FEP=

∑n

i=1
Ai×TSSi

∑n

i=1
TSSi
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(Figure S3). Species-specific habitat suitability change under fu-
ture bottom temperature and salinity conditions were generated 
by combining the weighted ensemble SDM with the CM2.6 bottom 
temperature and salinity fields at every projected time step during 
the 80-year run (spring = March-May, fall = September-November, 
annual = spring & fall). Regression analysis was performed at every 
grid cell (0.1°, n = 10,497), and the slope coefficient (β) was used to 
detect a temporal trend in climate-driven habitat suitability during 
the projected 80 years.

Ensemble SDM outputs were further aggregated for each man-
agement zones (see Figure 1), and habitat suitability changes be-
tween the first and last 10 years of the projected 80 years were 
analysed for those economically relevant areas (GOM-GB and SNE 
nearshore areas) and areas spanning a gradient of oceanographic 
conditions (GOM-GB and SNE). First, proportional changes among 
each habitat suitability tercile (highly suitable >0.66, suitable 0.33–
0.66, and least suitable <0.33) within each management zone were 
analysed to detect any changes in the habitat space (i.e. changes in 
space occupied by a given habitat suitability tercile). Second, the 
two-sample Kolmogorov–Smirnov (KS; Conover, 1971; DeGroot & 
Schervish, 2002) test at the 95% level was employed to measure the 
degree of habitat suitability similarity between first and last 10 years 
of the 80-year projections. This nonparametric test is commonly 
used to compare two empirical continuous distribution functions. 
Habitat suitability values from the first 10 years (modelled years 
1–10; 1st sample) and last 10 years (modelled year 71–80; 2nd sam-
ple) were treated as two empirical distributions at every projection 
grid across the study area (0.1°, n = 10,497). The KS test was used to 
assess the null hypothesis that these two distributions are equal (e.g. 
grid-level KS estimates with p < .05 indicating that the distribution 
of two habitat suitability samples from the first and last 10 years of 
the projected 80 years are significantly different).

2.7 | Assessment of uncertainty in the ensemble 
projections

Finally, unanimity of agreement among individual ensemble mem-
bers (i.e. every SDM run with TSS > 0.5 and ROC > 0.8) was analysed 
to assess the magnitude of uncertainty in the ensemble projections 
(Collins et al., 2013). A linear trend from every individual SDM pro-
jection was classified as either an increase (positive slope coefficient 
with p < .05), decrease (negative slope coefficient with p < .05) or 
no change (p ≥ .05). Agreement ratio among individual ensemble 
members was then calculated for each management area, where a 
ratio of 1 indicates that all individual SDM projections exhibited the 
same trend (increase, decrease or no change). The agreement ratio 
was calculated from both weighted and unweighted individual SDM 
projections. Unweighted agreement ratio indicated that all individual 
SDM projections were considered equally, while the weighted agree-
ment ratio indicated that individual SDMs with higher skills were 
given more weight on agreement ratio. For a given management 
area, a projected trend was considered likely (agreement ratio above 

66%) or unlikely (agreement ratio of less than 33%). Furthermore, 
the agreement ratio from both weighted and unweighted individual 
ensemble members was compared to assess the robustness of pro-
jected habitat suitability changes within each management area.

3  | RESULTS

For both lobster and scallop, 16 and 21 tuned SDM runs met the per-
formance thresholds (TSS > 0.5 and ROC > 0.8; Table S3). ANN (2nd 
run), GLM (all runs), and SRE (all runs) did not meet the performance 
thresholds and were rejected for lobster, while GLM (all runs) and 
SRE (all runs) were rejected for scallop (Table S3). The prediction ac-
curacies of the selected SDM runs for both lobster and scallop were 
considered acceptable by meeting both TSS > 0.5 and ROC > 0.8 
thresholds (Tables S3 and S4). Additionally, based on spatially strati-
fied cross-validation, we determine that both overfitting and spatial 
bias within our modelling framework are negligible (Figure S6). GBM 
showed the best performance and was highest weighted for both 
lobster and scallop (Figures S7 and S8). Response curves from the 
individual SDM algorithms included in final ensemble models indi-
cated nonlinear relationships between the probability of presence 
and environmental variables for both species (Figures S9 and S10). 
For lobster, high agreement among selected SDM response curves 
was observed on bottom temperature, longitude and latitude. For 
scallop, response curves showed high variability on all predictor vari-
ables, suggesting their varying importance for driving the probabil-
ity of the presence of this species. Latitude was the most important 
predictor variable in the lobster ensemble model, while the depth 
was the most important predictor variable in the scallop ensemble 
model. Bottom temperature was the most important dynamic pre-
dictor variable for lobster, while bottom salinity was the most impor-
tant dynamic predictor variable for scallop (Figure S11).

The final ensemble model for lobster and scallop produced a 
spatial distribution of habitat that corresponds well to consensus 
of the general, broad-scale distribution of these species over the 
NEUS-LME (Figure 2). In general, a highly suitable habitat (>0.66) 
for lobster was found along the inshore GOM up into the Bay of 
Fundy. During the spring, western Long Island Sound and the area 
south of Rhode Island showed high habitat suitability. For scallop, a 
highly suitable habitat (>0.66) was found along offshore MAB, SNE 
and GB areas (Figure 2). Additionally, a highly suitable scallop habitat 
was found along the inshore GOM along with select offshore shoal 
areas. Projected warming across the NEUS-LME over the 80 years 
resulted in large spatial changes in habitat suitability of lobster and 
scallop (Figure 3). For lobster, deep areas within the GOM showed a 
strong increasing trend in habitat suitability. Lobster habitat suitabil-
ity in inshore areas remained stable during the spring but showed a 
declining trend during the fall. The general distribution of changes 
in scallop habitat suitability over the study period showed a clear 
north-positive, south-negative trend (Figure 3), with habitat suit-
ability declined in the MAB, SNE and GB areas. Within GOM-GB, 
inshore areas along with select shoal areas showed an increase in 



     |  993TANAKA eT Al.

scallop habitat suitability while deeper offshore areas remained rel-
atively stable.

Changes in habitat suitability between the first and last 10 years 
of the projected 80 years were aggregated within each management 
zone. For lobster, a decline in the highly suitable habitat (habitat 
suitability tercile >0.66) was found in the GOM-GB nearshore area 
during the fall (−6.89%), while both of the SNE areas during the fall 
showed an increase in the area occupied by the least suitable habitat 
(habitat suitability tercile < 0.33) (+12.66% for SNE, +23.68% for the 
SNE nearshore) (Figure S10). For scallop, the SNE area showed a de-
cline in the space occupied by the highly suitable habitat (−19.23%), 
and the GOM-GB nearshore area showed a decline in space occu-
pied by the least suitable habitat (−5.38%) (Figure S12).

For lobster, most of the statistically significant habitat suit-
ability changes (p < .05) were associated with deeper areas within 
the GOM-GB area during both seasons, and also the majority of 
the GOM nearshore area during the fall (Figures S13 and S14). In 
contrast, Sea scallop exhibited statistically significant changes 
in habitat suitability over a large portion of the study area (>60%) 
(Figures S13 and S14). For lobster, major changes in median habi-
tat suitability were from spring GOM-GB (first 10 years = 0.38, last 

10 years = 0.44) and fall GOM-GB nearshore (first 10 years = 0.76, 
last 10 years = 0.69; Figure 4). Suitable scallop habitats decreased 
throughout SNE (first 10 years = 0.25, last 10 years = 0.19 for near-
shore, first 10 years = 0.25, last 10 years = 0.21 for whole area; 
Figure 4).

80 years of ensemble projections within management zones were 
associated with statistically significant (p < .01) changes in species 
habitat suitability (Figure 5 and Table 1). For lobster, habitat suitabil-
ity in the SNE management areas was projected to decrease during 
the fall, while the GOM-GB management areas showed an increasing 
trend except for the GOM-GB nearshore area during fall. For scal-
lop, only the GOM-GB nearshore area showed an increasing trend 
in the species’ habitat suitability. Internal variability in the ensemble 
habitat suitability projections indicated that individual SDM predic-
tions exhibited a range of trends (increase, decrease or no change) 
within each management area (Figure 5). Variability among the in-
dividual SDMs often increased as the model year progressed (e.g. 
lobster habitat suitability projections in the fall GOM-GB manage-
ment area). Several management areas were associated with a high 
agreement ratio for projected changes in species habitat suitability 
(Table 2). For lobster, the projected decline in habitat suitability in 

F I G U R E  2   Maps showing the habitat suitability (probability of presence) for American lobster and sea scallop across the study area as 
predicted by the final ensemble model under the historical climatology (1955–2012). The colour ramp corresponds to predicted habitat 
suitability, where dark blue indicates low habitat suitability and red indicates high habitat suitability (scaled 0–1)

F I G U R E  3   Temporal change in habitat suitability (probability of presence) over the future 80 years of changes (linear trend per 80 years) 
in bottom temperature and salinity for American lobster and sea scallop. The colour ramp corresponds to a linear trend in habitat suitability 
with red areas having a positive change and blue areas having a negative change
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the GOM-GB nearshore and SNE management areas during fall were 
considered likely (i.e. at least 66% of the individual SDMs agreed on a 
statistically significant declining trend), while the projected increase 
in lobster habitat suitability in the GOM-GB during spring was likely. 
For scallop, both weighted and unweighted agreement ratios among 
individual SDMs indicated likely decline in scallop habitat suitability 
within the SNE management areas.

4  | DISCUSSION

Ensemble SDMs are increasingly being used in ecology as they ad-
dress a major challenge associated with SDM algorithm selection, 
that can have a large impact on projections (Araújo & New, 2007; 
Buisson, Thuiller, Casajus, Lek, & Grenouillet, 2010; Forester, 
Dechaine, & Bunn, 2013). Studies have shown that projections based 
on a single SDM, out of the myriad biostatistical approaches cur-
rently available, can have enough variability to cause misinterpre-
tation of even a simple application (Araújo & Luoto, 2007; Pearson 
et al., 2006). For example, Pearson et al. (2006) applied nine com-
monly used bioclimatic models to a standardized dataset on South 
African plant species and found widely ranging results among dif-
ferent modelling techniques. Such challenge constitutes a large 
source of uncertainty in SDM outputs; however, a growing body 
of literature suggests that the combination of individual algorithms 
yield lower mean error than any individual constituent part (Araújo & 

New, 2007; Buisson et al., 2010). Through providing a method to 
alleviate issues associated with variability in ecological predictions 
across a wide range of currently available statistical methods, en-
semble SDMs provide the distinct advantages of offering a more 
straightforward approach to model selection. Our ensemble mod-
elling procedure that weights each model according to its predic-
tive performance can minimize the bias associated with a particular 
modelling approach. These are important considerations because 
the rapidly changing NEUS-LME requires more robust SDM model-
ling efforts.

This study provided an ecosystem-wide projection of lobster 
and scallop habitat suitability changes in response to simulated 1% 
year-1 increase in global atmospheric CO2 concentration, which was 
characterized by more than 1°C increase in the average bottom tem-
perature in the areas of high lobster and scallop abundance (Figure 
S4). For lobster, the key findings include a marked decrease in fall 
inshore habitat suitability and a statistically significant increasing 
trend in habitat suitability in the deeper GOM-GB area (Figure 5 
and Table. 1). Only offshore GOM-GB areas were identified as the 
area with an increasing trend in habitat. Temperature-driven habitat 
shifts towards deeper offshore also suggest a potential decrease in 
the probable distribution of lobster in the fall. The dominant tempo-
ral trend for scallop over the simulated 80 years is a climate-driven 
habitat reduction in every management area except for the GOM-GB 
nearshore area. While these changes would not move a broad spatial 
summary between habitat suitability tercile classifications (highly 

F I G U R E  4   Spatially aggregated 
changes in habitat suitability for American 
lobster and sea scallop between first and 
last 10 years under the future 80 years 
of changes in bottom temperature and 
salinity within selected management 
zones. Vertical dotted lines represent 
median from each time period. Median 
habitat suitability values from each 
period are shown within each panel. GBK, 
Georges Bank; GOM, Gulf of Maine; SNE, 
Southern New England
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suitable >0.66, suitable 0.33–0.66, and least suitable <0.33) as habi-
tat generally remained within the coarse tercile groupings, this study 
suggests that climate change will act as a likely stressor to the south-
ern lobster and scallop fisheries and continues to drive the further 
contraction of scallop and lobster habitats into the northern areas. 
These findings parallel other studies on the spatial distribution of 
these species in response to oceanographic change in the Northwest 
Atlantic (Howell, 2012; Stanley et al., 2018; Steneck & Wahle, 2013; 
Tanaka & Chen, 2016; Torre et al., 2018; Wahle, Castro, Tully, Cobb, 
& Cobb, 2013). Similar findings were also reported for other major 
commercial stocks in this region. Nye et al.(2009), analysed temporal 
trends of the centre of biomass, mean depth, mean temperature of 
occurrence and area occupied of 36 fish stocks from 1968 to 2007 
and found that many stocks exhibited a poleward shift with a con-
current increase in depth.

We analysed the ratio of agreement between individual model 
projections to provide a useful measure of uncertainty in the species 
habitat suitability projections (Table 2). Assessment of individual 
SDM agreement in habitat suitability trend identified management 
areas with robust changes, areas with small changes or areas where 
models disagree or a combination of those. Statistically weighted 
ensemble means generally offers a more useful estimate of changes 

in species habitat suitability distribution as it is less sensitive to 
outliers. The trends in the ensemble habitat suitability projections 
were statistically significant in 10 out of 12 management areas 
(Table 2). However, we showed that there were significant differ-
ences between the different members of the final ensemble pro-
jections (Figure 5), and it is important to note that the ensemble 
means do not always imply robustness of species response across 
individual SDMs. For example, the statistically significant increasing 
trend in the spring lobster habitat suitability within the GOM-GB 
nearshore management area was associated with a large uncer-
tainty, as the agreement ratio among individual SDMs was between 
39%–44% (generally interpreted as “about as likely as not”; Collins 
et al., 2013). Similarly, we were able to detect relatively large in-
ternal variability (i.e. disparity in agreement ratios from weighted 
and unweighted ensemble projections) in the scallop habitat pro-
jections in the GOM-GB management areas (Table 2). It is important 
to acknowledge that these assessments do not necessarily reduce 
uncertainty in the ensemble projections and confidence state-
ments cannot be inferred from model agreement alone. However, 
we recommend the assessment of agreement between individual 
ensemble members as a measure of uncertainty in the ensemble 
projections (Collins et al., 2013).

F I G U R E  5   Changes in habitat 
suitability (probability of presence) 
over the future 80 years for American 
lobster and sea scallop in the selected 
management areas. Individual projections 
(thin coloured lines) for each habitat 
model; weighted ensemble mean (thick 
black line) for all habitat models. GB, 
Georges Bank; GOM, Gulf of Maine; SNE, 
Southern New England. ANN, artificial 
neural network; FDA, flexible discriminant 
analysis; GAM, generalized additive 
model; GBM, generalized boosting model; 
MARS, multiple adaptive regression 
splines; MAX, maximum entropy; RF, 
random forest
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Modelled habitat suitability in this study should be interpreted as a 
proxy for probability of presence (occupancy) as opposed to actual lob-
ster and scallop habitat suitability, given that measured catch was af-
fected by some niche dimensions and processes not explicitly included 
in the predictors (e.g. territorial occupancy occurring at smaller scales) 
(Tanaka et al., 2018; Torre et al., 2018). Furthermore, projected species 
habitat suitability changes in this study should be viewed as a poten-
tial change in occupancy of a species due to changes in bottom tem-
perature and salinity while holding all other top-down and bottom-up 
variables constant (e.g. fishing pressure and species interaction), and 
long-term habitat suitability changes for both species are likely not 
unanimously linked to the large-scale warming. For example, the as-
sessment of variable importance revealed bottom salinity to be the 
most important climatic variable for scallop (Figure S7), indicating that 
multi-decadal variability of the scallop habitat availability across the 
NEUS-LME was primary driven by changes in bottom salinity (Figure 
S11). Salinity is a physiologically important environmental variable for 
marine species, and it can directly influence broad-scale species distri-
bution patterns in nearshore waters and estuaries (e.g. lobsters in Long 
Island Sound; Tanaka & Chen, 2015; Watson III, Vetrovs, & Howell, 
1999). For scallop, as large portions of the study area are well within the 
species’ physiological tolerance (29.9–35.6 ppt), the observed scallop–
salinity relationship is likely related to other variables that are struc-
tured along salinity gradients in a given area (e.g. origin of water mass; 
Torre et al., 2019). As is often the case with species–environment mod-
elling, certain variables may be functioning as surrogates for factors 
directly controlling species distribution through physiological mecha-
nisms (Araújo & Peterson, 2012; Austin, 2007). Regional predator–prey 
interactions such as sea star predation on sea scallops can also have a 
significant effect on the distribution of the species at smaller scales 
(Hart, 2006; Hart & Chute, 2004; Lowen et al., 2019). Furthermore, we 
used latitude and longitude as proxy variables to capture a wide range 
of covarying bio-climate factors such as spatiotemporally variable fish-
ing pressure and larval supply (Guernier, Hochberg, & Guégan, 2004; 

Shumway & Parsons, 2016; Tanaka et al., 2018; Wikgren, Kite-Powell, 
& Kraus, 2014). As a result, certain areas with high-quality habitats 
may have a lower probability of detected presence. Another potential 
limitation of our modelling approach is that the interpolation of sur-
vey-derived environmental data masks the scale at which fine-scale 
habitat selection (active or passive) is occurring for each species. These 
are important points to consider in future studies. This study focused 
on evaluating the changing species habitat suitability over large a large 
spatial scale. Our dataset reflects more than 30 years of aggregated 
species occurrence–environment relationship characterized by broad 
spatial and temporal ecological ranges, which can reduce uncertainty 
in the subsequent projection effort by allowing models to incorporate 
more complete species’ realized niche. As more comprehensive envi-
ronmental data becomes available in the future, a further detailed en-
semble SDM approach could include additional variables such as pH, 
dissolved oxygen, predator–prey and other food–web interactions to 
capture a more comprehensive representation of the biogeography of 
lobster and scallop (e.g. Bio-ORACLE http://www.bio-oracle.org/).

Our study can contribute to the assessment of exploited 
fishery resources in a rapidly changing environments such as 
the NEUS-LME. For example, our study can contribute to lob-
ster and scallop assessment by improving the effectiveness of 
survey efforts and the precision of stock assessment models. 
Fishery-independent surveys are a critical component of stock 
assessment as they provide spatial and temporal information 
about lobster and scallop stocks (ASMFC, 2015; Johnson et al., 
2015). However, the effectiveness of the survey depends greatly 
on both the bias and precision of abundance estimates (Mier & 
Picquelle, 2008), and geographically uneven change in lobster 
and scallop catch could lead to inefficient survey design and the 
allocation of sampling effort. Even when intensive sampling ef-
forts are conducted, resource limitations often preclude the ac-
quisition of adequate spatial or temporal coverage to capture an 
entire range of available habitat, or species distribution, which 

TA B L E  1   Linear trends in the ensemble habitat suitability projections by species, season and management area

Species Season Management area Slope
p-
value

American lobster
(Homarus americanus)

Fall GOM_GB 0.01 <.01

GOM_GB Nearshore −0.03 <.001

SNE −0.03 <.001

SNE Nearshore −0.03 <.001

Spring GOM_GB 0.04 <.001

GOM_GB Nearshore 0.02 <.001

SNE 0 .94

SNE Nearshore −0.01 .09

Sea scallop
(Placopecten magellanicus)

Annual GOM_GB −0.03 <.001

GOM_GB Nearshore 0.03 <.001

SNE −0.03 <.001

SNE Nearshore −0.03 <.001

Abbreviations: GB, Georges Bank; GOM, Gulf of Maine; SNE, Southern New England.

http://www.bio-oracle.org/
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can result in under-informed management decisions (Brown, Buja, 
Jury, Monaco, & Banner, 2000). Here, developing a species-spe-
cific ensemble habitat projection with a magnitude of uncertainty 
provides several advantages in avoiding fixed and subjective 
stratification to improve the precision and accuracy of estimated 
stock status (Shelton, Thorson, Ward, & Feist, 2014). Additionally, 
many stock assessments fail to incorporate long-term changes to 
species distribution (NMFS, 2010; Skern-Mauritzen et al., 2015), 
highlighting the need for model projections of spatiotemporal 
changes to fish stocks. In the traditional stock assessment models 
that focus on the context of commercial fishing, natural mortality 
is often relegated to a single, typically time-invariant parameter 
that is not related to the species’ ecology (ASMFC, 2015; Johnson 
et al., 2015). Incorporating climate-driven habitat availability into 
stock assessments may also improve the model fittings by defining 
different modelling time periods with respect to these processes 
(Tanaka et al., 2019). One accomplishment of this study is to pro-
vide an ensemble projection of the future habitat availability of 
the lobster fisheries by synthesizing multiple surveys (Figure 3). 
Several studies have documented the climatic impact on the spe-
cies’ biogeography (e.g. Kleisner et al., 2017; Pinsky et al., 2013) 
based on the offshore survey data alone, which does not cover 
the inshore waters where over 95% of lobster catches were re-
ported (e.g. Maine, New Hampshire and Massachusetts; Tanaka 
et al., 2019). Multiple survey data can calibrate SDMs with better 
inputs and, therefore, allow these models to make more reliable 
species preference functions and predictions as well as reasonable 
spatial coverage of the area relevant to the management of this 
species.

Commercial marine fisheries are complex socio-ecological 
systems that support social well-being and global food security 
(FAO, 2018). The ecological, economic and social value of fish-
eries depends largely on the biomass of fish stocks, with fish-
ing pressure being the main driver of resource status (Hilborn 
& Walters, 1992). Species distributions are influenced by many 
interacting biotic and abiotic processes, which can manifest as 
highly unpredictable occurrence–environment relationships 
(Boulangeat, Gravel, & Thuiller, 2012; Merow et al., 2014). While 
there are numerous examples of climate-forced distribution shifts, 
there has been little progress incorporating population regime 
changes into stock assessments and management outputs (Link, 
Nye, & Hare, 2011; Smith, Sameoto, & Brown, 2017). Changes 
in stock distribution pose several management and conservation 
challenges because it can affect the traditional boundaries prin-
ciples for sustainable governance of common-pool resources (e.g. 
catch allocations based on historical stock availabilities within ex-
isting management boundaries; Pinsky et al., 2018). Current man-
agement practices are generally focused on maintaining fisheries 
stock biomass or productivity within fixed management boundar-
ies and have accorded little considerations to environmental fac-
tors (Pinsky et al., 2018; Skern-Mauritzen et al., 2015). However, 
there are some studies that have provided useful examples of ef-
forts to incorporate climate-forced distribution shifts into stock 
assessments. For example, Link et al. (2011) outlined a decision 
tree framework for addressing stock distribution shifts, with ap-
proaches falling into one of three categories: re-evaluate stock 
identification, re-evaluate a stock unit area or implement spatially 
explicit modelling. Additionally, Smith et al. (2017) discuss the 

TA B L E  2   Weighted and unweighted agreement ratio for projected habitat suitability changes over the future 80 years. A linear trend 
from every individual ensemble member SDM projection was classified as either an increase (positive slope with p < .05), decrease (negative 
slope coefficient with p < .05) or no change (p ≥ .05). Agreement ratio of 1 indicates that all individual SDM projections exhibited the same 
trend (increase, decrease or no change). Unweighted agreement ratio indicates that all individual SDM projections were considered equally, 
while the weighted agreement ratio indicates that individual SDMs with higher skills were given more weights on agreement ratio (assigned 
weights are shown in Figure S2). Number of accepted model runs; lobster (n = 16), scallop (n = 21)

Species Season Management area

Increase Decrease No change

Unweighted Weighted Unweighted Weighted Unweighted Weighted

American 
lobster

Fall GOM_GB 0.50 0.36 0.38 0.47 0.13 0.16

GOM_GB Nearshore 0.06 0.01 0.75 0.84 0.19 0.15

SNE 0.19 0.20 0.81 0.80 0.00 0.00

SNE Nearshore 0.00 0.00 0.88 0.86 0.13 0.14

Spring GOM_GB 0.69 0.87 0.06 0.04 0.25 0.09

GOM_GB Nearshore 0.44 0.39 0.25 0.09 0.31 0.52

SNE 0.25 0.24 0.25 0.04 0.50 0.71

SNE Nearshore 0.19 0.13 0.44 0.24 0.38 0.63

Sea 
scallop

Annual GOM_GB 0.10 0.21 0.81 0.57 0.10 0.22

GOM_GB Nearshore 0.48 0.81 0.14 0.00 0.38 0.19

SNE 0.00 0.00 0.90 0.80 0.10 0.20

SNE Nearshore 0.10 0.22 0.81 0.66 0.10 0.12

Abbreviations: GB, Georges Bank; GOM, Gulf of Maine; SDM, Species Distribution Models; SNE, Southern New England.
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application of a spatial model for fishing effort to the state-space 
Bayesian stock assessment model for the Canadian maritime sea 
scallop fishery to incorporate habitat associations with both pop-
ulation processes and spatial fishing patterns. These examples 
demonstrate that while the effects of climate change are complex 
and diverse, decision-making beyond the traditional boundaries 
principles should use as much information and knowledge as pos-
sible to maximize the benefits of management actions and sub-
sequent policy implementations (De Ornellas, Milner-Gulland, & 
Nicholson, 2011). The first step is for management authorities to 
identify areas of biogeographical changes with reliable projections 
and associated uncertainties and establish adaptive management 
strategies to cope with fisheries impacted by ecosystem change. 
For example, our ensemble future habitat projections with uncer-
tainty estimates can increase the long-term effectiveness of ma-
rine protected areas and spatially explicit catch quotas to reduce 
pressures on fish stocks that are expected to experience further 
habitat degradation. Responding to biogeographical changes in 
natural resources requires a tool that can synthesize large amounts 
of information and policies that are appropriately adaptive and ad-
equately informed by high-quality projections.

Our study proposed an ensemble means to infer the potential 
future habitats, based on high-resolution climate data, of two eco-
nomically important fisheries resources in the NEUS-LME. Through 
providing a method to alleviate issues associated with variability 
in ecological predictions across a wide range of currently available 
SDMs, ensemble modelling approaches provide the distinct advan-
tages of reducing error in projections and providing a more reliable 
estimate of uncertainty (Araújo & New, 2007; Buisson et al., 2010). 
Additionally, the use of geographically comprehensive survey data 
can reduce bias in the subsequent modelling efforts. Thus, the mod-
elling framework developed in this study adds quality projections 
of spatiotemporal trends in the distribution of lobster and scallop, 
which constitute a critical step to improving the management of 
these species.
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global climate model, please contact vincent.saba@noaa.gov.
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